1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
| import tensorflow as tf from tensorflow import keras from tensorflow.keras import datasets import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
print('GPU', tf.test.is_gpu_available())
(x, y), _ = datasets.mnist.load_data() x = tf.convert_to_tensor(x, dtype=tf.float32) / 255. y = tf.convert_to_tensor(y, dtype=tf.int32) print(x.shape) print(y.shape)
w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1)) b1 = tf.Variable(tf.zeros([256])) w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1)) b2 = tf.Variable(tf.zeros([128])) w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1)) b3 = tf.Variable(tf.zeros([10])) print(w1.shape, b1.shape) print(w2.shape, b2.shape) print(w3.shape, b3.shape)
train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128) lr = 1e-3 for epoch in range(10): for step, (x, y) in enumerate(train_db): x = tf.reshape(x, [-1, 28 * 28])
with tf.GradientTape() as tape: h1 = x @ w1 + b1
h1 = tf.nn.relu(h1) h2 = h1 @ w2 + b2 h2 = tf.nn.relu(h2) out = h2 @ w3 + b3
y_onehot = tf.one_hot(y, depth=10) loss = tf.square(y_onehot - out) loss = tf.reduce_mean(loss)
grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3]) w1.assign_sub(lr * grads[0]) b1.assign_sub(lr * grads[1]) w2.assign_sub(lr * grads[2]) b2.assign_sub(lr * grads[3]) w3.assign_sub(lr * grads[4]) b3.assign_sub(lr * grads[5])
print(epoch, step, 'loss: ', float(loss))
|