TensorFlow 实战——前向传播(张量) 发表于 2019-05-20 | 字数统计 330 字 | 阅读时长 2 分钟 Reference 深度学习与 TensorFlow 2 入门实战 TensorFlow-2.x-Tutorials coding1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556import tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras import datasetsimport osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'print('GPU', tf.test.is_gpu_available())(x, y), _ = datasets.mnist.load_data()x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.y = tf.convert_to_tensor(y, dtype=tf.int32)print(x.shape) # (60000, 28, 28)print(y.shape) # (60000,)# 使用tf.Variable包装,因为tf.Variable有梯度信息w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))b1 = tf.Variable(tf.zeros([256]))w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))b2 = tf.Variable(tf.zeros([128]))w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))b3 = tf.Variable(tf.zeros([10]))print(w1.shape, b1.shape) # (784, 256) (256,)print(w2.shape, b2.shape) # (256, 128) (128,)print(w3.shape, b3.shape) # (128, 10) (10,)train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128) # 一次取128张图片lr = 1e-3for epoch in range(10): for step, (x, y) in enumerate(train_db): # (128, 28, 28) => (128, 784) x = tf.reshape(x, [-1, 28 * 28]) with tf.GradientTape() as tape: # (128, 784)@(784, 256) + (256,) => (128, 256) + (256,) => (128, 256) + (128, 256) => (128, 256) h1 = x @ w1 + b1 h1 = tf.nn.relu(h1) h2 = h1 @ w2 + b2 h2 = tf.nn.relu(h2) out = h2 @ w3 + b3 y_onehot = tf.one_hot(y, depth=10) loss = tf.square(y_onehot - out) loss = tf.reduce_mean(loss) grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3]) # 计算梯度 # w1 = w1 - lr * grads[0]会返回tf.Tensor类型的数据,使用assign_sub包装会原地更新 w1.assign_sub(lr * grads[0]) b1.assign_sub(lr * grads[1]) w2.assign_sub(lr * grads[2]) b2.assign_sub(lr * grads[3]) w3.assign_sub(lr * grads[4]) b3.assign_sub(lr * grads[5]) print(epoch, step, 'loss: ', float(loss)) 本文标题:TensorFlow 实战——前向传播(张量) 文章作者:魏超 发布时间:2019年05月20日 - 16:05 最后更新:2019年05月21日 - 16:05 原始链接:http://www.weichao.io/2019/05/20/TensorFlow-实战——前向传播(张量)/ 许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。 ---------------------本文结束---------------------