TensorFlow 实战——前向传播(张量)

Reference


coding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
print('GPU', tf.test.is_gpu_available())
(x, y), _ = datasets.mnist.load_data()
x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.
y = tf.convert_to_tensor(y, dtype=tf.int32)
print(x.shape) # (60000, 28, 28)
print(y.shape) # (60000,)
# 使用tf.Variable包装,因为tf.Variable有梯度信息
w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
b1 = tf.Variable(tf.zeros([256]))
w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
b2 = tf.Variable(tf.zeros([128]))
w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
b3 = tf.Variable(tf.zeros([10]))
print(w1.shape, b1.shape) # (784, 256) (256,)
print(w2.shape, b2.shape) # (256, 128) (128,)
print(w3.shape, b3.shape) # (128, 10) (10,)
train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128) # 一次取128张图片
lr = 1e-3
for epoch in range(10):
for step, (x, y) in enumerate(train_db):
# (128, 28, 28) => (128, 784)
x = tf.reshape(x, [-1, 28 * 28])
with tf.GradientTape() as tape:
# (128, 784)@(784, 256) + (256,) => (128, 256) + (256,) => (128, 256) + (128, 256) => (128, 256)
h1 = x @ w1 + b1
h1 = tf.nn.relu(h1)
h2 = h1 @ w2 + b2
h2 = tf.nn.relu(h2)
out = h2 @ w3 + b3
y_onehot = tf.one_hot(y, depth=10)
loss = tf.square(y_onehot - out)
loss = tf.reduce_mean(loss)
grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3]) # 计算梯度
# w1 = w1 - lr * grads[0]会返回tf.Tensor类型的数据,使用assign_sub包装会原地更新
w1.assign_sub(lr * grads[0])
b1.assign_sub(lr * grads[1])
w2.assign_sub(lr * grads[2])
b2.assign_sub(lr * grads[3])
w3.assign_sub(lr * grads[4])
b3.assign_sub(lr * grads[5])
print(epoch, step, 'loss: ', float(loss))

本文标题:TensorFlow 实战——前向传播(张量)

文章作者:魏超

发布时间:2019年05月20日 - 16:05

最后更新:2019年05月21日 - 16:05

原始链接:http://www.weichao.io/2019/05/20/TensorFlow-实战——前向传播(张量)/

许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。

---------------------本文结束---------------------